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EXTENDED ABSTRACT 
 
SYNTHESIS OF HIGHLY CONVERGENT FINITE ELEMENT MODELS 
FOR SHORT WAVE PROPAGATION 
 
RIMANTAS BARAUSKAS 
Department of System Analysis, Kaunas University of Technology,  Lithuania 
e-mail: rimantas.barauskas@ktu.lt 
 

SUMMARY 
The presented approach for reducing the phase and group errors in short wavelength pulses propagation modeling is based upon 
the modal error minimization.  The computational model is built of alike component substructures (CS)  the matrices of which 
are obtained by modal synthesis. The necessary modal properties of component substructures are established by solving the 
cumulative modal error minimization problem for a sample domain the exact modal frequencies of which are known 
theoretically. Modal frequencies and shapes of the component substructure are used as the design parameters for the modal error 
minimization problem . After the matrices of a component substructure are obtained, they can be used to form any structure 
higher-order elements. Earlier the approach has been demonstrated to work well in 1D case. In this work the results for 2D 
rectangular meshes describing elastic and/or acoustic wave propagation have been obtained.  As a result, models having up to 
80% of modal frequencies with an error less than 2% can be obtained by using the optimized component substructures.  Though 
the synthesized mass matrices are non-diagonal, the obtained dynamic models are able to simulate short transient waves and 
wave pulses propagating in elastic or acoustic environments by using only a few nodal points per pulse length.  
KEY WORDS: modal synthesis; modal error; transient wave simulation 

1. INTRODUCTION 

The shape of a propagating short wavelength pulse simulated in a discrete mesh is inevitably 
distorted if the distance traveled by the pulse comprises a large number of lengths of the pulse. 
As a result, the shape and duration of the simulated pulse become very different from the values 
expected theoretically. An important source of distortions is the phase error inherently produced 
by the discrete model. The errors usually are minimized by using very dense meshes, however, 
this makes the simulation complex and requiring huge computational resources. The modal 
errors of the computational domain can be regarded as the origin of phase errors. As a 
consequence of them, different harmonic components of waves comprising the wave pulse 
propagate with different velocities and produce group errors of wave propagation.    

As early as in 1982 different modal frequency convergence features of dynamic models 
obtained by using lumped and consistent forms of mass matrices have been noticed [2]. The 
convergence of modal frequencies of dynamic models can be improved by using the 
‘generalized’ form of the mass matrix obtained as a weighted superposition of lumped and 
consistent mass matrices, [3]. Approaches concentrating on improvement of modal convergence 
properties and retaining the diagonal form of the mass matrix have been presented [4-7].  
Element type 99 of LSDYNA program is intended for vibration studies carried out in time 
domain. These models may have very large numbers of elements and may be run for relatively 
long durations. This is achieved by imposing strict limitations on the range of applicability, 
thereby simplifying the calculations: elements must be cuboid; small displacement, small strain, 
negligible rigid body rotation; elastic material only. The element formulation also includes 
single element bending and torsion modes [8].   

The non-diagonal matrices obtained by modal synthesis can give better results. In 1D case 
they produce models having 60-80% of modal frequencies with error values less than 3%, [9]. In 
this work we demonstrate that the main principles of the approach presented in [9] can be 
applied also for 2D rectangular wave propagation models. Computational domains are being 
assembled of component substructures ‘optimized’ in order to provide minimum cumulative 
modal frequency errors of selected sample domains. We demonstrate that the structure of any 
size assembled of such component substructures has approximately the same percentage of 
‘close-to-exact’ modal frequencies as had the sample domain. Though the synthesized mass 
matrices are non-diagonal, the obtained dynamic models are able to simulate transient waves by 
using only a few nodal points per pulse length.  
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2. GENERAL RELATIONS OF MODAL SYNTHESIS 

Finite element models of small vibrations and waves in elastic or acoustic continua are 
presented by the well known semi-discrete structural dynamic equation as  
 [ ]{ } [ ]{ } { }( )t+ =M U K U R ,  (1) 

where[ ],[ ]M K - structural mass and stiffness matrices,{ }R  - nodal forces vector.  In problems 
addressed in this work we assume the damping forces to be very small and omit the damping 
term.  

The structural matrices used in (1) can be expressed by using modal synthesis relations as 

[ ] [ ]( ) [ ] [ ] [ ]( ) [ ]
1 11 12 2 2

1 2; ( , ,..., )T T
ndiag ω ω ω

− −− − = =  M Y Y K Y Y  , (2) 

where 1 2, ,..., nω ω ω  are the modal frequencies of the model of dimension n n× , and 

[ ] { } { } { }1 2, ,..., n=   Y y y y  - the modal shapes. By using relations (2) desirable dynamic properties 
expressed in terms of known modal frequencies and modal shapes can be supplied to model (1).  
 
 
 

3. “OPTIMUM” COMPONENT SUBSTRUCTURES 
 
In wave propagation models large parts of computational domains can be built of alike 

component substructures (CS) consisting of identical elements. As a limit case, a CS may consist of 
a single element, or may be a larger domain the shape of which is geometrically similar  to the 
shape of the element. We need  to optimally modify the spectral properties of  a CS in order to 
produce the minimum modal frequency error of the whole structure.   

In our approach, formation of the mode set for modal synthesis is performed by solving the 
eigenvalue problem for the free CS n-r times by taking each time different generalized mass 
matrices as ( )[ ] [ ] 1 [ ]e e e

Lj L Lj Ck k= + −M M M , j=r+1,…,n, where  r – number of rigid body modes of 

the CS, n- dimension of he CS. The weight coefficient 0 1Ljk≤ ≤  is the parameter the value of 
which is to be specified.  As initial value, 0.5Ljk =  could be regarded as a reasonable choice. From 
each j-th eigenvalue problem solution only one (i.e., the j-th) modal frequency and modal shape is 
selected and included into the set used later for modal synthesis. Finally the rigid body modes 1 to r 
are generated, and the mode  set for modal synthesis reads as 1 2, ,..., nω ω ω ;  

[ ] { } { } { }1 2, ,..., n=   Y y y y .  
Modal frequencies and shapes are further modified by scaling them as 

( ) ( ) { }2 2 2 2
1 1 2 20,...,0, , ,...,r r r r r n ndiag diagω ω ω ωα ω α ω α ω ω+ + + + +

   =    α  ;     (3) 

{ } { } { } { } { }1 1 1,..., , ,...,y y y
r r r n nα α+ +    =   y y y y Y α , (4) 

where { } { } { } { }1 11,...,1, ,..., , 1,...,1, ,...,
T Ty y y

r n r n
ω ω ωα α α α+ += =α α  are coefficients the values of 

which need to be specified. Initially, coefficients { }ωα and { }yα have unity values.   
The above presented modifications of the modal set preserve the physical essence of the 

unconstrained CS. It means, the modal frequencies corresponding to the rigid body modes are  
zeroes and the modal shape vectors remain orthogonal and express essentially the same modal 
shapes as before the modification. Also the total mass of the CS remains unchanged. 

Now the modal frequency  error minimization problem can be formally presented as 
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where the penalty-type target function presents the cumulative modal frequency error of the 
structure, ˆ iω  - modal frequency of i-th mode of the structure, 0ˆ iω  - its exact value known 

theoretically or obtained by using  a highly refined  finite element model. Number N̂  of modes 
contributions of modal errors of which are included into function (5) can be selected freely. It 
means that namely these N̂  lower modes will have minimized modal errors. We suggest N̂  to be 
taken as 30-80% of the total number of modes of the sample domain. The larger is the individual 
CS, the larger number of modes can be expected to have small, say, 0.5-2% modal error values. Our 
numerical experiments demonstrate that by using CS of size 2x2 (CS_2x2) modal errors of about 
30% of modes of the domain can be expected to be made lower than the above mentioned value. 
Meanwhile, the CS_5x5 allow to achieve minimized modal errors over almost 80% of modes. The 
thorough discussion on this is presented in section 4 of this paper.  

The optimization is performed by assembling CS into sample domains of a shape similar to 
the shape of a CS provided that sufficiently large number of exact modal frequencies of the sample 
domain is known. As an example, for rectilinear and rectangular acoustic domains such modal 
frequencies are available analytically. In other cases a highly refined model of the sample domain 
can be used in order to obtain ’nearly exact’ (say, <0.5% error) modal frequency values. The size of 
the sample domain practically is determined by a reasonable amount of calculations. Our numerical 
experiments demonstrate that often it is enough to perform optimization on a sample domain 
consisting of only several CS-s, and the optimized matrices of a single CS work well if a 
considerably larger structure is assembled. We can’t present any theoretical proof of the validity of 
the approach, however,  numerical experiments presented in [9] and in this work illustrate that it 
works. 

4. NUMERICAL RESULTS 
Fig.1 presents the results obtained by investigating the modal properties of quadrilateral 

acoustic sample domain 13x13 nodes assembled of quadrilateral elements (i.e. each CS is a 2x2 
node quadrilateral element). Fig. 1a demonstrates the relative modal errors of the domain 
obtained by using lumped, consistent and generalized mass matrices. The modal error 
distribution for the three types of models is quite typical. Lumped matrices have a tendency to 
diminish the modal frequency values. On the contrary, consistent mass matrices give oversized 
values. The errors of the models employing the generalized mass matrices are always smaller, 
however the modal errors cannot be achieved to be close to zero over all modal frequency range. 
Fig.1b presents the results obtained by using optimized CS_2x2 as described in section 3.  
Number N̂  in function (5) has been selected equal to ~30% of the total number of modes of the 
sample domain. Consequently, in Fig.1b ~30% of modes have modal errors less than 2%.   The 
optimized models assembled of CS_2x2 do not demonstrate a marked difference in the modal 
error distribution when compared with the generalized mass matrix models. Much better results 
can be obtained by using larger CS-s. CS_5x5 has been optimized to form structures with 
minimal modal errors of more than 80% of the total amount of modes of the structure. The 
results of the optimization are presented in Fig.2. Fig.2a presents the modal errors of the sample 
domain 13x13 nodes assembled of optimized CS_5x5. The same CS_5x5 assembled to 29x29 
node domain give modal errors presented in Fig.2b. In both cases all modal errors in the range of 
lower 80% modes of the structure do not exceed 1-2%. On the other hand, Fig.2a and b justify 
the assumption that the modal error distribution over the modal frequency range is nearly 
independent upon the size of the structure. 

The performance of the optimized CS with respect to traditional elements is demonstrated in 
Fig.3 by analyzing the acoustic wave pulse propagating through a very roughly meshed domain. 
Excited by means of one sine pulse of normal velocity at the boundary excitation zone (Fig.3a) 
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the circular wave front propagates and is reflected from the boundaries of the domain. The 
curves in Fig.3b demonstrate the propagating wave shapes obtained by using optimized mass 
matrix formulation and the reference wave shape obtained as a convergent solution in a densely 
meshed model. An excellent performance of the optimized model assembled of CS_5x5 is 
demonstrated where only ~5 elements used per wave pulse length enabled to get the shape of the 
wave in close resemblance to the reference wave shape.  

Similar results can be observed by analyzing quadrilateral elastic domains. Fig.4 presents 
relative modal errors of lumped and consistent models. When combined to the generalized mass 
matrix with the weight of the lumped component kL=0.35 the relative error distribution is 
obtained less than 5% over all the modal frequency range. Therefore the computational wave 
propagation models obtained by using such generalized mass matrices are expected to have a 
very good performance. By performing the optimization process of the CS_3x3 the relative 
modal errors can be further diminished, Fig.4b. However, relative modal frequency errors of 
several modes cannot be made lower than 4%. 

5. CONCLUSIONS 
The research presents highly convergent 2D  computational models for wave propagation 

simulations consisting of rectangular substructures. The computational models are assembled of 
optimized component substructures obtained by performing the optimization of the modal 
properties of a sample domain.  Optimized component substructures assembled to larger 
domains demonstrate the same modal error distribution over the modal frequency range as has 
been obtained for the sample domain. The same component substructures can be used for 
assembling real computational domains of any size.  

When compared with lumped, consistent or generalized mass matrices, the optimized 
component substructures produce significantly better results. However, the mass matrices of the 
optimized CS are non-diagonal.  The obtained 2D models have very close-to-exact (less than 1-
2% error) modal frequency values of more than ~80% of the total amount of modes of the 
structure and are able to present the propagating wave pulse shape by using only few nodal 
points per wavelength.  
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Fig. 1. Relative modal errors of the quadrilateral acoustic sample domain 13x13 nodes assembled of  CS_2x2: 

a- lumped, consistent and generalized mass matrices;  
b- generalized mass matrices and optimized CS_2x2 

 
Fig. 2. Relative modal errors of the domains 13x13 (a) and 29x29 (b) nodes assembled of optimized CS_5x5   
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Fig. 3. Acoustic wave propagating in a roughly meshed (13x17) domain: 
a – rough mesh and velocity potential contour plot at a given time point;  
b – reference shape of the wave and the wave shape along the centerline of the model obtained by using the optimized and 
lumped mass matrix models CS 5x5. 
 
 
 

 
Fig. 4.  Relative modal errors of quadrilateral elastic sample domain 13x13 nodes: 

a –lumped, consistent and generalized mass matrices;  
b –generalized mass matrices and optimized CS_3x3 


